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Abstract

We present a theoretical basis for a novel way of studying and repre-

senting the long time behaviour of finite dimensional maps. It is based on

a finite representation of e-pseudo orbits of a map by the sample paths of a

suitable Markov chain based on a finite partition of phase space. The use

of stationary states of the chain and the corresponding partition elements

in approximating the attractors of maps and differential equations was

demonstrated in [7] [3] and proved for a class of stable attracting sets in

[8]. Here we explore the relationship between the communication classes

of the Markov chain and basic sets of the Conley Decomposition of a dy-

namical system. We give sufficient conditions for the existence of a chain

transitive set and show that basic sets are isolated from each other by

neighborhoods associated with closed communication classes of the chain.

A partition element approximation of an isolating block is introduced that

is easy to express in terms of sample paths. Finally in considering the ir-

reducibility of the chain, we show that when the map supports an SBR
measure there is a unique closed communication class and the Markov

chain restricted to those states is irreducible.

KEYWORDS: attractors, chain transitive sets, Conley decomposition

AMS subject classification: 58F11,58F12, 28D,28D20
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1 Introduction

The relationship between the orbits of a dynamical system and the dynamic

behavior of random perturbations of that system has been of interest for both

practical and theoretical reasons. Various attempts at modelling the effect of

roundoff in numerical computations or the effects of noise on the mechanisms

modelled by the dynamical systems all involve such perturbations. The presence

of stability especially stochastic stability is often interpreted as a sign of the

robustness of the model to random disturbances. Our purpose here is to go in the

opposite direction in some sense. Given the long-time behavior of a randomly

perturbed map we wish to obtain information about the long-time behavior

of the the unperturbed map. If the system is stochastically stable and has

some hyperbolicity, we can expect some degree of success. Absent hyperbolicity

very little is known and the correspondence between random and perturbed

dynamics is quite limited in general. Nevertheless it is a useful exercise to

explore the analogy between the Conley decomposition of the chain recurrent

set of a homeomorphism and the well known structure theorem governing the

long time behavior of Markov chain sample paths- taking advantage of the fact

that they can be associated with pseudo orbits whose behavior in a statistical

sense is well understood. Indeed when the map is topologically stable, the

partial ordering on chain recurrent sets induced by the Conley decomposition

is entirely analogous to a partial ordering in the Markov chain induced by the

communication relation. Even in the cases where stability fails, this approach

leads to a novel method of analyzing the dynamics of the map. In particular we
can numerically approximate attractors, and identify chain transitive invariant

sets by suitable identification of Markov chain stationary states (or equivalently

the strong components of the the graph of the Markov chain). This means
that we can approximate important elements of the long time behaviour of the

dynamical system without computing long trajectories. In general the number
of basic sets found from closed communication classes of the Markov chain is a

lower bound on the number of basic sets in the original dynamical system. For

maps with a finite number of basic sets,classes and basic sets correspond when
the partition is fine enough. We conjecture that some systems with infinitely

many basic sets can be well approximated too as the first example in Section 4

illustrates.

The Markov chain we discuss has been used by others notably Hsu [7], who
approximated attractors and basins of attraction of maps and ordinary differen-

tial equations. Although few proofs were given, Hsu successfully demonstrated

the versatility and convenience of the method. M. Dellnitz [3], [4] and co-workers

applied the method we describe here and in [8] to approximate the invariant

measure of the Lorenz attractor and the attractors of other maps and flows.

Recently, E. Akin and W. Miller [2] identified the basic sets of a map and the

basic sets in a shift space associated with a filtration based on finite partitions of

the map domain. Earlier D.Ruelle and then Y. Kifer [10] discussed the Conley

decomposition in terms of a Markov process based on application of the map
followed by a random perturbation in a ball shaped neighborhood about the
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image. The sample paths interpreted as pseudo-orbits can be used to define a

partial order that in certain cases characterizes attractors and basic sets. Kifer

studied a finite Markov chain when the number of basic sets is finite. Each

state is associated with a basic set and transitions occur when the sample path

of the chain leaves one basic set and goes to another [10]. Our partition based

approach has less theoretical flexibility than the general state space chains dis-

cussed by Ruelle and Kifer. However the fact that the state space is finite

and that partitions are easy to generate greatly enhances their computational

accessibility.

2 Preliminary Results

Let / : X —> X be continuous and nonsingular with respect to Lebesgue measure

and defined on X a compact subset of TZd . We introduce a Markov chain

that can be associated with a random perturbation of the dynamical system

defined by
(X,f ). Let X = (JjLj L be a partition of X into U, elements of a

partition <Ln we will refer to as boxes. Each /; is a closed set with 7(7* ) > 0 and

£(7* n If) = 0 where i is Lebesgue measure. Let M be an n x n matrix with

entries [M]y = m^.

m ij
— 7(7; n /

-1
(7j))/7(7i) (1)

If Iij = 7jPl/
_1

(7j), note that 7, = U"=1 7^ and 7 (
7^ 07^) = 0 if j k. It is not

hard then to show that M is a stochastic matrix and thus defines a finite state

Markov chain MCn ,
on the positive integers {1,2, • • -n}. We introduce the set

valued function in : X —¥ {1, 2,
• • -n} to identify the states of MC n associated

with points and subsets of X. Specifically if x G Ik G $n ,
then in {x) = k when

x is an interior point of and in (x) = {fc|x 6 <97*} when x is a boundary point

of The next lemma and the theorem following it will be frequently used in

our discussion.

Lemma 2.1 Let f : X X be continuous and non-singular on X compact.

Given a positive number e, there exists an integer no > 0, such that for every

finite sample path of MCn ,
n > no, there is an e-chain (e-pseudo orbit), with

points that are in the boxes of 3>n defined by the states of the path.

PROOF: Proceeding by induction, suppose that Xq, X\, Xk the points of an e-

chain have been found, corresponding to the first k states of a sample path. The

points he in the partition elements 7ai ,7a2 ,

•• - 7
afc
We suppose xt — f(xi- 1 ) +

Ci) |Ci| < M — 0, ••k. The existence of a sample path implies that 7(7ajc Pi

/~ 1
(7afc+J) 0, so there is a u* G Iak D /

_1
(7afc+1 ). Now using the continuity

of /, we can assume diam($n )
is small enough so that

|

/(it*) — /(x*)| < e, by

supposing n > no for some sufficiently large no- Now /(n*) G 7*+i so we set
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Xk+ 1 = f{uk ), so xfc+ i = f(x k ) + Cfc+1. where ICfc+il < e. Continuing in this

way we construct an e-chain for each step in the sample path.

In fact more is true. Given an orbit of / we can find a sample path and a

corresponding sequence of boxes, which contain the points of the orbit. Because

of Lemma 2.1, we see that this is the reverse of the shadowing property of

hyperbolic maps where e-chains are approximated by orbits of /; for this reason

we refer to the theorem below as the Reverse Shadowing Theorem.

Theorem 2.2 (Reverse Shadowing Theorem) Let {re*,} with xk — f
k
(xo)

be an orbit of f starting at xq. For any n there is a sample path of MCn ,

(zo,zi,*'*) such that xk ^ and Pi k \ ^ ^ *

PROOF: Again we proceed by induction first assuming Iio has been defined.

If xi is an interior point of a box-call it J(x i), there is an e such that B( (x i) C
I(xi). By continuity of / there is a <5 > 0 such that f(Bs{xo)) C Be (x i). Thus,

Bs (x0 )
n/(i0 ) c i(x0 ) n/

_1
(J(xi))

Since B$ (xo) n 7(xo) has a non-empty interior (whether xo is an interior or

boundary point of <E>n ), £(Bs(x0 )
fl 7(x0 )) > 0. Set T 1

= I(xi). This completes

the argument for xi an interior point. If xi is a boundary point of it

belongs to several boxes. There exists at least one-call it J such that £(7(xo) fl

/
-1

(^)) > 0. The argument that shows this goes as follows: let 0\ be an open

set containing xi such that Oi C |Jx edJ 0\ fl J . If 5 > 0 is chosen so that

f(Bs(x0 )) C Oi, then R5 (x0 )n7(x0 ) C J(x0)n/
-1

(C>i) and £(Bs(x0 )nl(x0 )) >
0. Thus £(/(xo) H /

_1 (d 1 )) > 0. Now suppose £(/(xo) D /
_1

(J)) = 0, for every

J, with xi € dJ. Since 0\ C 0\C\J that would mean that

£(/(xo)nr\o 1 ))< J2 e(i(xo)nf- 1

(0 1 nj)) =
J:Xi£dJ

•£ «/(xo)nr 1 (J)n/- 1
(Oi))) = o

J:X\£dJ

However this is a contradiction. Thus £((/(xo) fi /
-1

(J)) > 0, for some J. Set

/ij = J for any such J. Note that for x 6 d$n there may be several possible J.

The construction of the rest of the sample path, is done by assuming the path
with boxes Iy

, j = 0,
• • • k — 1, has been constructed. Replacing x0 with xk-i

and xi with xk ,
the previous argument is repeated to obtain Iik . The desired

sample path is therefore ij, j — 0, 1,
• • • .
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3 Chain Recurrent Sets and Markov Chain Com-
munication Classes

We will need the following definitions see [1], [15].

Definition: A set A is said to be chain recurrent iff for each x G A and any

e > 0, there exists a periodic e-chain of arbitrary length that contains x.

Using periodic e chains one can group recurrent points into equivalence classes

defined by the following relation.

Definition: x ~ y iff for every e > 0 there is an e-chain of arbitrary length

joining x to y and y to x.

The equivalence classes are called chain components.

Definition: An /-invariant chain component is called a chain transitive set.

Definition: A maximal chain transitive set i.e. a set which cannot be con-

tained in any larger chain transitive set is called a basic set.

Conley’s Fundamental Theorem for homeomorphisms on a compact set says

that the long time dynamics of the system occurs on the chain recurrent set

7Z(f). When 7Z(f) has hyperbolic structure, it can represented as the finite

union of basic sets (maximal chain transitive sets). The dynamics between basic

sets is gradient-like while the dynamics within a basic set itself is topologically

transitive and has a degree of complexity depending on the specific structure

of the stable and unstable manifolds within the set. The e-chain equivalence

relation is the foundation of Conley’s decomposition and in the hyperbolic case

we can link this to the so-called communication relation existing between states

of MCn .

Definition: If i and j are states of the Markov chain MCn ,
then i j, if

3k > 0, such that m* > 0. Thus state j can be reached by a sample path of

length k starting from state i with positive probability.

Definition: i and j are said to be in the same communication class, that is,

i <—» j, if i —> j and j i.

<—

>

is an equivalence relation on the states of MCn and the corresponding

equivalence classes are called communication classes. A communication class is

maximal in the sense that if any state communicates with a state in the com-

munication class it too belongs to the class. We will need one final definition.

Definition: A set of states C is said to closed if for i 6 C and j £ C ,
implies

that rriij — 0.

A standard result in the theory of finite Markov chains states that the sample
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paths of the chain eventually enter closed (and therefore Markov chain recur-

rent) communication classes.

Statement of Results:

In addition to the previous assumptions on / we also assume:

1. For all x e A and any n, x £ <9$n implies that any neighborhood of x

contains some point p £ A in the interior of a box I where x € dl

Define An = (j{I e$ n :/nA^0} and In (x) = I(tn (x)) = Ujec.n (x
)Ij-

Remark: Assumption 1 implies that the isolated points of A must be dis-

joint from for any n

Lemma 3.1 Let 1) be satisfied and suppose A is a transitive invariant set. For

each n, the states Xn = {in (x)}xeA n >
corresponding to the set An ,

are contained

in a single MCn communication class.

Proof:

Let ki £ tn (x) and &2 £ tn (y). There is a transitive point w £ int(IkJ and

integers mi > m2 such that f
m2

(w) £ int(Ik2 )
and f

mi (w) € int^Iki) where

int denotes the interior of a set. Now by the Reverse Shadowing theorem there

is a MCn sample path from state hi to k2 and back. This shows that ki -H- ^ •

Remark: We will later show that there is a communciation class consisting of

states that lie on sample paths that join states in An

The next result about hyperbolic invariant sets assumes that / is a diffeo-

morphism. Recall that if 71(f) has a hyperbolic structure then / has a finite

number of hyperbolic basic sets (which are transitive). Maps with this property

include those that are Axiom A. The methods of this section can be used to

analyze the dynamics of such systems.

REMARK: Call the communication class discussed in Lemma 3.1 cn and
define the corresponding subset of A as Cn = |J{/(i) : 4 € cn }.

Proposition 3.2 Let A be a hyperbolic chain transitive invariant set contained

in Cn . Then Cn contains the maximal chain transitive invariant set (basic set

)

containing A.
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Proof:

Given any x G A, let z ~ x. We claim that in (z) C c n . Let be the

e-chain joining z to x and x to z with x\ = x and xj = x (

m+l = z. By the Anosov

Closing Lemma [15] there is a periodic orbit {Q}£l+
Z where +l G int(I)

and Q G int(J). If x and/or z are in <9<&n then I (J) is some box for which

x G dl
( z G dJ). The proof that a suitable e > 0 can be chosen so that

Ci , Q are not in d$n uses assumption 1. Again by the Reverse Shadowing

Theorem there is a MCn sample path through the states {tn (Q Thus

in (7) = (Ci) ^—> in (C/ )
= If in particular, z is in the basic set contain-

ing A, then in (J) G cn - so z G Cn .

The next result states that a basic class is isolated from every other chain

transitive set when cn is a closed communication class and n is sufficiently large.

Proposition 3.3 Let cn be a closed MCn communication class and Cn ,
the

corresponding union of boxes as defined above. Let A be a basic set contained

in Cn and T / A another chain transitive set. Then for n sufficiently large,

mCn = 0.

Proof:

Let T / A be a basic set such that T D Cn 0 for infinitely may n. Let e > 0 be

given and suppose p G T, and q G A. We may choose n large enough according

to Lemma 2.1 so that we can construct a closed e-chain joining xn to q from

the closed sample path joining tn {xn )
to Ln {q) where xn G T fl Cn . Since T is a

chain transitive set, there is a closed e-chain joining p and xn so combining the

two chains gives one an e- chain joining p and q and conversely. Since A is a

maximal chain transitive set we must have TcA-a contradiction. There must

exist an integer no therefore, such that Cn meets no other chain transitive set

for all n > no-

The next series of results illustrate how the communication structure of the

chain can be used to locate chain transitive sets and basic sets for /.

Lemma 3.4 Let c be a closed communication class ofMC n . Let Gc = :

i G c}.

• is closed, compact and forward invariant

• Ac = io(Qc )
is closed compact and f -invariant.

Proof :

Without loss of generality assume in (x) is a single state in c. $c is a finite

union of closed subsets of X compact so this proves the first property. We
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now show that if x G 9C then f(x) G 9C . It suffices to show there is some

box I C In (f(x)) fl 9C . Since In (f(x)) contains f(x) there is a one-step orbit

from In (x) to Jn (/(x)). By the Reverse Shadowing Theorem there is an MC n

sample path from in (x) to a state in tn (/(x)). Since c is a closed communica-

tion class in (/(x)) C c if f(x) is an interior point of 3>n . Otherwise there is

l G tn (/(*)) with tGc. From the definition of 9 C it follows that In (/(x)) G 9C

if f(x) is £ d$n and In (i) G 9C is f(x) G <9$n . Now the existence of a compact

/-invariant Ac follows from the forward invariance of 9C [1]

Given A C X there are a set of states in MCn associated with A. They

are in (A) = (tn (x) : x G A}.

Theorem 3.5 If A is an f-invariant set satisyfing assumption 1), tfc(A) is con-

tained in a single MCk communication class for all sufficiently large k, then A
is a chain transitive set and is contained in Ck-

Proof of Theorem:
For any points x, y G A, tk(x) <—> fc*(y) for all k sufficiently large where ik(x)

and tjfc(y) are states in the communication class corresponding to boxes of 4>n

containing x and y respectively. Thus for any e there is an e-chain as in Lemma
2.1 that can be constructed from a sample path joining tk{x) to tk(y) and tk(y)

to tk{x) when k is large enough. Hence x ~ y, and the chain transitive property

of A is established. A C : t G Ck} follows from the definition of tfc(A)

and the hypothesis of the theorem.

We now discuss an important tool for investigating the topological and dy-

namical properties of the Conley decomposition. An isolating block is a compact

subset N C X such that N D f~
1 (N) C\f(N) C int(N). That is, if the image of

a point in N falls on the bounday dN, the next iterate must fall outside of N.

Isolating blocks are useful because much (but not in general all) of the informa-

tion about the dynamics on or near an invariant set is retained by the isolating

block that contains it. More importantly, while invariant sets can change dras-

tically when the map is perturbed, the isolating block remains the same for

small enough perturbations ([5]). Topological properties of the isolating blocks

have been used to analyze dynamics of differential equations see e.g. [14]. The
entrance and exit time decomposition of isolating blocks has been used both

numerically and analytically to describe the dynamics and mass transport in

Hamiltonian systems [11] [5]. The construction discussed below is motivated by

the following proposition proved in [5].

Proposition 3.6 If A is a forward invariant set, then for each e > 0, N(e) =
R(A, e) is an isolating block where R(A, e) is the union of all e-chains starting

and ending in A

8



Given A as above, let pn be the set of all sample paths beginning and ending

in a state in An = {i : i G tn (x),x G A}. The forward invariance of A and the

Reverse Shadowing lemma imply that for all x G A there is a state i G rn (x)

such that l G pn . Let Jn — U teP„ /(0- Then Jn D A. Now Jn is not an iso-

lating block but if x G Jn and f(x) G djn we will show that /
2
(x) & int(Jn ).

Thus a point on the boundary that is in the image of Jn is mapped outside of

int(Jn ). The image can land on the boundary of Jn- a possibility that can’t

occur in an isolating block. In either case, the orbit of x cannot re-enter the

interior without leaving Jn altogether.

Lemma 3.7 Let x G Jn and f(x) G djn and let pn be the set of MCn states

that lie in sample paths starting and ending in Xn .

1. If i G Ln {x) H pn and j G in {f(x)) fl p
c
n then mjk = 0 Vfc G pn

2. /
2
(x) & int{Jn )

Proof of lemma: Suppose mjk > 0 for some k G pn Since there exists x, y G A
such that there is an lq G tn (x) with lq ^ l and a state jm G tn (y) with k —>• jm ,

we have to j jm- We conclude that j G pn - contradicting our hypothesis.

This proves (1). Now suppose f
2
{x) G int(Jn ). Then tn (/

2
(a:)) C pn - By the

Reverse Shadowing lemma there is a sample path from j to k G t(/
2
(x)). By

(1) however for such k, mjk — 0. Thus /
2
(x) ^ int{Jn ).

Remark: Note that when A is transitive, pn is a communication class.

It is not hard to show that the mean entrance and exit times for pn approxi-

mate the entrance and exit times of orbits up to a finite number of orbit steps

m = m(n) and there are well known results in the theory of Markov chains for

calculating these in terms of the transition probabilities. Thus we can obtain

approximate entrance and exit time decompositions for Jn . Using Proposition

3.6 it is not hard to also show that Jn contains an isolating block and is con-

tained in another. We conjecture therefore that the escape rates of invariant

sets (known to be the same for all isolating blocks) can be estimated by the

mean exit times of pn [6].

4 Attractor-Repellor Decomposition

We conjecture that when the chain recurrent set is hyperbolic, the ordering

induced by the map dynamics between basic sets is mirrored by the ordering

9



induced on the corresponding communication classes by the communication re-

lation. However it may be more instructive to focus on distinguished subsets

of IZ(f) and examine the relationship between map and Markov chain dynam-

ics in these cases. We therefore turn our attention to invariant decompositions

of X and discuss specific instances. In the following definition assume / is a

homeomorphism.

Definition: (see [1]) T is called an invariant decomposition ifT = {Fi ,
F2 ,

• •
•

,
Fn ),

with Fi,i — 1 ,
•••n pairwise disjoint non-empty closed /-invariant subsets of

X that cover the limit set /[/] = (af(X)Uuf(X)). It can be shown that

l[f] C 71(f).

Given an invariant set A, define W+ {A ) = {x : u>f(x) C A} to be the stable

set of A, and W~(A) = {x : af(x) C A] to be the unstable set of A. We will

assume that A is an /[/] separating subset of X.
A very important invariant decomposition is obtained when the sequence in

T consists of an attractor A+ and a repellor A_. The entire phase space can

then be written as [1]

X = A+ U A_ U (W+ (A+) n W-(A-))

It is clear the dynamics of / are that points in X are globally attracted to A+.
This is mirrored in the dynamics of the MCn for n large enough. Recall that

an invariant set A is asymptotically stable, if there exists an open neighborhood

U D A with x € U => u>(x) C A. As a consequence every neighborhood V of an

attractor A (which by definition is asymptotically stable) contains a compact set

B D A with the property that f(B) C int(B). Such a set is called an attractor

block. We have the following lemma.

Lemma 4.1 ([8]) .Suppose f is a continuous map with attractor A. If B is an

attractor block then for all sufficiently large n,

Bn Cf-\Bn ) (2)

where,

Bn = U{7 G$„:7fl5^0}

Corrollary 1 Let f be a non-singular and continuous map. The set of states

in MCn defined by the set Bn is closed under the communication relation.

Proof:

Let B be a block and suppose I C Bn . If J
<f.
Bn then l(f~

l J fl I) = 0.

To see this note that }~ l (J fl Bn ) = f~
l J D f~

1 (Bn )
D f~

l J Pi Bn by the

previous lemma. The latter set contains f~
l J fl I. Now l(J fl Bn )

— 0 so the

non-singularity of / implies that l(f~
1 (Jr\Bn ))

= 0. Thus when the chain is

10



in the state tn (7), it does not transtion to in (J). D -

Once the chain enters the states in {Bn )
it cannot leave but what guarantees

that the chain enters these states in the first place? Sample paths of the chain

must eventually enter stationary states so a sufficient condition is that in (Bn )

contain these states. We can state a theorem in the case there is one closed

communication class. Assume that the dynamical system has an ergodic SBR
measure. It can then be shown (see Section 5) that the MCn has this property

for every n so in this case there is a unique stationary vector for the matrix

M and set of stationary states. Let Sn be the union of boxes corresponding

to the non-zero elements of the the stationary vector. Sn is the support of the

stationary probability measure defined by the vector. If for large enough n it

can be shown that Sn C Bn then the chain does indeed enter the states defined

by in (Bn ). The following preliminary result is a special case of a result proved

in [13]

Proposition 4.2 ([13]) Let f have an ergodic SBR invariant measure. If C
is a union of elements (boxes) in with C C f~

1 (C )
then Sn C C .

where A C. B means £(A/B) = 0

Sn C Bn now follows from Lemma 4.1 and Proposition 4.2. More can be

said about the relationship between Markov chain dynamics and map dynamics.

Theorem 4.3 ([8]) Suppose p is an ergodic SBR measure for f that has an

attractor A as its support. Then for every neighborhood V of A there exists an

integer no, such that for all n > no,

ACSn CV (3)

The set of stationary states is Ln (Sn ). Now with the hypothesis on p any

neighborhood V of A contains an attractor block B with Sn C B C V for n
sufficiently large and since Ln (Sn ) C in {Bn ), we see that the chain must enter

in (Bn )
and never leave. The theorem tells us one more fact that is very use-

ful and that is the attractor A can be approximated in the sense of Hausdorff

metric by the set of boxes defined by the stationary states of MCn • Rather

than using one long orbit to approximate A, the methods of graph theory and

tree data structures can be used instead because the chain components of A are

approximated by the communication classes of the stationary states. This is in

fact equivalent to approximating the chain components by e-chains starting and

ending in A. We turn now to examples illustrating these ideas.

Example: Theorem 4.3 can be extended to invariant sets that are the in-

tersection of a nested sequence of attractors. Thus attracting sets which fail to
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have an open basin of attraction can still be approximated by the stationary

set Sn . The logistic map at the Feigenbaum parameter value which has an at-

tracting Cantor set, is an example. Thus Sn approximates it in the Hausdorff

metric. There are infinitely many periodic orbits in any neighborhood of this

set so the map not only fails to be hyperbolic- it fails to have a finite number

of basic sets. The set supports a unique invariant measure and the stationary

vector of M defines a measure that converges weakly to it in the limit of n [8]

.

Roots of a Complex Polynomial: Let P be a complex polynomial and

regard it as a function P : S2 1-4 S2 where S2
is the Riemann sphere. We define

a gradient function on S2
,
regarded as the complex plane compactified with the

point at infinity.

Vp(x) = -grad((\\ P(x) ||)

2
)/2 = -(DPx )‘

r
(P{x)) (4)

(4) defines a flow on R2 and has attractors or sinks at the zeroes {a,j} of P
and saddle points when distinct from the zeros of P (either hyperbolic or mul-

tipronged) at the zeroes {6j} of P', the complex derivative of P [16]. Letting

X = R2 U oo = S2
,
we claim that

X = \JW+
(a,j) U {00} U (J(W~(oo) n W+tOj)) (

5 )

j 3

where 00 is the point at infinity. This follows from the Poincare-Bendixson

theorem and the fact that C(x) =|| P{x)
||

2
is a Lyapunov function. To introduce

the mapping in our example we let

Th (x) = x + hVP (x)

where h is very small. Th is an Euler approximation of the flow defined by (4).

Observing that (4) defines a gradient system we can apply a result of Stuart

and Humphries [17] to assert that for h small enough Th has the same Lyapunov

function and the same fixed points as (4). Indeed finding fixed points of the

map by iteration is the basis of the method developed by Hirsch and Smale. Set

A+ = Uite), A- = Uj(W-(oo) n W+(6j)) U Uj{0j} U { 00 }. {A+ ,A.} is an

attractor repellor pair for Th- Suppose there are q roots. Each root a*, i = 1 •
• q

is the only attractor in some isolating neighborhood and it supports a unique

invariant measure <5ai ,
the point measure at a*. Rather than a single closed

communication class there is one for each a* so that Sn consists of q sets of

boxes, one for each communication class. We can apply Theorem 4.3 to each

class to show that the corresponding set of boxes approximate a* in the Haus-

dorff metric. Thus we have a procedure for numerically estimating the roots of a

polynomial that is based on refined subdivision rather than iteration. Coupling

this with a Monte Carlo [8] method for evaluating the elements of M, makes the

procedure very parallelizable and is a viable way of providing starting positions

for high precision root finding algorithms based on iteration.
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5 Measure Theoretic Results

All of the results with the exception of Theorem 4.3 have not depended on

properties of any invariant measures an attractor might support. In this sec-

tion, we will show how the requirement that p. be an SBR measure leads very

naturally to the idea of an irreducible recurrent chain. A Markov chain is said

to be irreducible if the entire state space is in one communication class. In our

discussion we assume that the domain of convergence to p referred to in the

definition of SBR is all of X with the exception of a set of Lebesgue measure

zero. We further assume that p has no support on the boundaries of the parti-

tions so that /i(Un5$n )
— 0. If p is an /-invariant measure that is equivalent

to l then we have the following result.

Theorem 5.1 ([9]) Let p be f-invariant, ergodic and equivalent to Lebesgue

measure. Then for every n, MCn is irreducible.

There are however a lot of situations when p is singular with respect to Lebesgue

measure particularly when / is multidimensional. For example the Henon map
(for certain parameter values) and its expanding cousin, the Lozi map have this

property. Nevertheless, we can show such attractors can still enforce the kind of

dynamics in the Ulam Markov chain that would lead to a single communication

class, provided the measure is SBR. To prove this we will need to show the

following;

Lemma 5.2 Let A C X be a Borel set with p(A) > 0. Then for all x G X
there exists an integer l > 0 such that P 1

(l(x), l{A)) > 0.

Pl

{i,j ) is the l -step transition probability for the chain.

Proof:

Given a box I C $n ,
there is a generic point xq € I such that am (A) =

1/m $f k (xo)(A) > 0 for m sufficiently large. We reason as follows. I has

positive Lebesgue measure so such an xo must exist. If A C Tn ,
the finite field

generated by 4>n then p(A) > 0 =$ p(A°) > 0 if A0 / 0. The Portmanteau

theorem applied to A° then implies liminfn_>00 <7m (A°) > p{A°). There exists

a 6 > 0 so that am (A°) > S and thus crm (A) > 0 for m sufficiently large.

If A is any Borel subset of X then using that fact that p(An ) > p(A), the

previous argument shows that <rm (An ) > 0 for m sufficiently large. There is

a MCn sample path l(x) = t0 , ii, Lm-i where Pik_ lt ik > 0 and such that

f
k
(xo) € -f(tfc) by the Reverse Shadowing theorem. For some Z, 0 < Z < m — 1,

f
l
(xo) € An . Otherwise for all such Z, Sfi^Xo ^(An )

— 0. This contradicts

the fact that crm (An ) > 0. Now tn (A) = tn (An )
and P l

(in (x),in (An )) >

po.i •Pik-\Ak '"Pii-iAi by the Chapman Kolmogorov equation. The conclu-

sion of the theorem now follows by observing that the product is positive.
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Suppose An is the set of states corresponding to the set An ;
i.e. Xn = {tn (^)}i6A„ •

For each k G An ,
the corresponding box I(k) has positive p measure since it

contains a point in the support. By Lemma 5.2 t —>• k for all states l € MCn .

Let us define the set of states reachable by An as

7n = {j 3 * € An ,z -> j)

Lemma 5.3 7„ is a closed communication class

Proof: The communication property follows from the definition of jn ,
the pre-

vious remark and Lemma 5.2. If j 0 7n and for some r € 7n ,
and mrj > 0, then

for i € An ,
i r —> j or i —¥ j. This contradicts the fact that j ^7n . Thus 7n

is closed

Since every state of the chain must eventually enter An , 7n is the only closed

communication class of MCn -

Theorem 5.4 If [x is a SBR measure, then MCn restricted to 7n is irreducible

for every n. All other states are transient.

We turn now to a description of Sn ,
the support of the stationary measure of

the chain. It depends on the fact that all states enter a single finite irreducible

subchain and that such a chain is Markov chain recurrent. Irreducibility and

recurrence in the theory of finite Markov chains is a special case of a condition

known as Harris recurrence. The following is an adaptation to finite state spaces

of a theorem of Meyn and Tweedie for Harris recurrent chains on general state

spaces.

Theorem 5.5 ([12]) Let nn be the unique stationary measure of the chain

MCn ,
described in the previous theorem. Then 7rn is equivalent (as a measure

on the finite field Tn) to

(6)

where K„(t, ) = rf=0 Pl
(i, -)/2 <*+1 >

and Jl(l) = p(I{i))

Theorem 5.4 tells us that nn is indeed unique and its support is in fact 7n . To
see this observe that 7n is the support of vn . Equivalence of 7rn and vn means
they have the same support.

14



The picture we have then is this. Given an invariant set A supporting an /-

invariant SBR measure we have proved that all states in MCn eventually enter

a closed communication class containing states whose corresponding partition

boxes are at once a cover and a finite set approximation to A. The commu-
nication class itself is the support of a unique stationary measure that can be

expressed (up to equivalence) in terms of p. If A is an attracting set with

some stability the set approximation is a good one. For example suppose A is

the intersection of a nested sequence of asymptotically stable sets then for any

neighborhood U of A the set A C Sn C U for n sufficiently large.
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